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An Optimised Deep Learning Model for Load Forecasting  
in Electric Vehicle Charging Stations  

Abstract. Accurate short-term load forecasting in the Electric Vehicle Charging Stations 
Network enhances power grid management. Existing methods often overfit the highly 
fluctuating energy consumption data from charging stations, creating a gap in developing 
accurate models. This paper tackles this challenge by proposing a ConvLSTM-BiLSTM, 
based encoder-decoder network, where convolutional layers are used to capture spatial 
trends along with recurrent layers for temporal dependencies. Furthermore, the model’s 
hyperparameters are tuned using Levy Flight Particle Swarm Optimisation, enhancing its 
performance. The proposed model is evaluated on a publicly available Electric Vehicle 
Charging Stations dataset from Palo Alto City. The accuracy of the ConvLSTM-BiLSTM 
architecture with LFPSO optimisation surpasses that of conventional LSTM, BiLSTM 
models, and other encoder-decoder configurations. Significant improvements in RMSE, 
MAPE, and MSE were achieved, with reductions of around 37.14%, 62.13%, and 61.17%, 
respectively. The enhanced overall forecasting accuracy aids in better resource allocation 
and improves grid stability. 
 
Keywords: Deep learning, electric vehicle, electric vehicle charging stations, encoder-
decoder network, Levy flight particle swarm optimisation, load forecasting.  
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1. Introduction 
 

Global adoption of electric vehicles (EVs) has increased in recent years, 
indicating a considerable transition in the automotive industry towards cleaner and 
sustainable transportation (Ravi & Aziz, 2022). Organisations throughout the world 
are adopting EVs as a crucial component to reduce carbon emissions, prevent climate 
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change, and promote energy efficiency. Advances in battery technology, stronger 
pollution restrictions, and greater awareness of the need for sustainable alternatives 
to fossil fuel-powered vehicles are all driving up EV demand (Rasoulinezhad, 2022). 
As a result, EVs are becoming more accessible to consumers, and forecasts indicate 
that their market share will continue to expand in the future decades (Ravi & Aziz, 
2022). Although the shift to EVs is desirable, there are certain challenges, especially 
in the field of energy management. Load forecasting plays a vital role in energy 
management, as it ensures the stability and reliability of the power grid (Habbak et 
al., 2023). Load forecasting of charging stations refers to the prediction of future 
energy demand based on several factors. Since the broad adoption of EVs has a major 
effect on trends in energy consumption, an accurate estimation of the load in 
charging stations is particularly necessary. EV charging consumes a large amount of 
energy, particularly when charging during peak hours. Poor management of this 
increased demand could result in excessive stress leading to power breakdown in the 
grid. By addressing these energy management challenges, load forecasting plays a 
key role in maximising the benefits of EV adoption while maintaining grid stability 
and efficiency. Load forecasting can be considered a time series problem, in which 
historical data is utilised for forecasting future energy demand patterns. Time-series 
data often includes components such as trend, seasonality, autocorrelation, and 
noise. Noise levels are especially high when it comes to EV charging due to 
variations in charging habits and external influences. This makes it difficult for 
predictions and necessitates accurate methodology. Current techniques for load 
forecasting are broadly classified into two types: statistical methods, which rely on 
known mathematical models to capture data patterns, and data-driven methods, 
which use machine learning and advanced deep learning algorithms to analyse large 
data sets and learn trends.  

Traditional statistical methods, such as the autoregressive integrated moving 
average (ARIMA) model, are commonly employed for load forecasting. Jubieras et 
al. (1999) used ARIMA for hourly load forecasting, adding weather factors to 
increase short-term prediction accuracy. Akshay et al. (2024) demonstrated that 
SARIMA outperformed ARMA, ARIMA models in forecasting EV loads, obtaining 
greater accuracy with lower error metrics. Lo Franco et al. (2023) combined the 
statistical approach with the machine learning model to forecast the load at EV 
charging stations, considering the SOC data for better accuracy. Overall, while 
traditional statistical models provide fundamental insights into time-series 
forecasting, the complexities of modern EV charging necessitate the use of advanced 
methods like machine learning and deep learning. These methods improve accuracy 
and address uncertainties, making them more applicable to real-world EV 
infrastructure.  

In recent years, data-driven approaches to forecast EV charging loads have 
gained popularity, due to the advancements in machine learning and deep learning. 
Park et al. (1991) were the first to use artificial neural networks (ANN) for 
forecasting electric loads, demonstrating the model’s ability to detect nonlinear 
patterns in data. Li et al. (2018) used deep learning models like Long Short-Term 
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Memory (LSTM) and Gated Recurrent Units (GRU) to forecast EV charging station 
loads. GRU outperformed other models in terms of accuracy. Dabbaghjamanesh et 
al. (2021) introduced Q-learning for load prediction, which significantly improved 
forecast accuracy in both coordinated and uncoordinated EV charging scenarios. 
Huang et al. (2023) introduced MetaProbformer, the first transformer based load 
forecasting model utilising meta-learning to improve generalisation ability on new 
stations with scarce historical records. Yang et al. (2023) proposed a hierarchical 
load forecasting problem via attention-based LSTM model by capturing more 
complex trends in the data. Li et al. (2023) proposed a model of deep reinforcement 
learning with application in probabilistic charge load forecasting from real charging 
data using LSTM and proximal policy optimisation (PPO). Mohammad et al. (2023) 
developed ConvLSTM and BiConvLSTM encoder-decoder models to capture 
spatio-temporal correlations for forecasting energy consumption at EV charging 
stations. Table 1 summarises a comprehensive review of recent literature relevant to 
this research. 

 
Table 1. Overview of Existing Research on Load Forecasting for Electric Vehicle 

Charging Stations (EVCS) 

Source: Authors' analysis. 
 

Although several methods, such as ARIMA, SARIMA, LSTM, and CNN-based 
architectures, have been developed for EV load forecasting, most approaches fail to 
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fully capture the intricate spatio-temporal dependencies in charging station networks. 
Additionally, many models overfit or struggle with generalisation, particularly in 
high-variability scenarios like EV load demand. Moreover, while some studies focus 
on long-term or probabilistic forecasting, there is a critical gap in state-of-the-art 
methods regarding the availability of novel approaches for accurate short-term load 
forecasting that are able to capture spatial interdependencies and temporal dynamics 
within electric vehicle charging station networks. Addressing these gaps will be 
critical to improving the accuracy of load forecasting and enabling effective grid 
management.  

To address the aforementioned gaps, a data-driven deep learning model is 
proposed for short-term load forecasting offering the following main contributions. 
 

 
 

Figure 1. Block diagram of the proposed framework 
Source: Authors’ own creation. 

 
(I) We propose a ConvLSTM-BiLSTM based encoder-decoder model that 

effectively captures the spatio-temporal dependencies within the charging station 
network.  

outperforming the performance of traditional methods.  
(II) The proposed methodology considers the interconnected nature of charging 

station networks rather than isolated stations. The forecasting accuracy has improved 
due to this deeper understanding of the network’s dynamics. 

III) Key features, such as peak and off-peak hours, are extracted from the 
existing features through feature engineering, as part of the preprocessing of the Palo 
Alto dataset.  
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(IV) Further, we employ Levy Flight Particle Swarm Optimisation (LFPSO) for 
optimising the hyperparameters of the DL model, which enhances the model’s 
performance.  

                         
 
 
 

The subsequent sections of this paper are structured as follows. Section II 
provides a detailed explanation of the methodology that is proposed. Section III 
discusses the proposed model’s performance within the EVCS dataset. Finally, 
Section IV concludes by discussing key findings and future research directions. 

 
2. Proposed Methodology 
 

Dynamic characteristics of the demand within Electric Vehicle Charging 
Stations (EVCS) Networks and their integration with the power grid constitute a 
significant challenge to forecast electric vehicle charging load. Existing methods 
often fail to capture both spatial and temporal correlations among charging stations, 
leading to inaccurate predictions. To tackle this challenge, our research introduces 

Figure 2. Work flow of proposed 
deep learning approach 

Source: Authors’ own creation.  
 
 

Figure 3. Flow chart describing 
the workflow of LFPSO 

Source: Authors’ own creation. 
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an innovative short-term load forecasting approach for EVCS that employs a deep 
learning (DL) based prediction model. Specifically, within an encoder-decoder 
architecture, we propose a combination of Convolutional Long Short Term Memory 
(ConvLSTM) and Bidirectional Long Short Term Memory (BiLSTM) networks. 
This architecture captures complex relationships within the EVCS and predicts 
future charging demands accurately. For hyperparameter tuning, this study employs 
Levy Flight Particle Swarm Optimisation (LFPSO) as a novel methodology. The 
LFPSO’s exploration and exploitation capabilities are utilised to efficiently search 
the hyperparameter space, thereby balancing the exploration of new regions with the 
exploitation of promising areas. For identifying the optimal hyperparameter 
configuration, this ability to maintain a balance is crucial, which greatly reduces 
overall performance metrics, ultimately leading to a more accurate and robust deep 
learning model for EVCS load forecasting. The proposed framework of the EVCS 
load forecasting model, which employs both encoder-decoder architecture                 
and LFPSO for hyperparameter tuning, is depicted as a block diagram in Figure 1. 
A flowchart explaining the complete workflow of the proposed approach is given    
in Figure 2. 
 
2.1 Development of LFPSO for optimising the hyperparameters 

 
Levy Flight Particle Swarm Optimisation (LFPSO) is used for hyperparameter 

optimisation. PSO struggles with global search and often becomes stuck in local 
optima. LFPSO addresses this issue by implementing the Levy flight mechanism. 
This approach enables particles to explore search space more efficiently, perhaps 
avoiding local minima and identifying superior solutions than standard PSO (Haklı 
& Uğuz, 2014). This section explains the methodology used to optimise the 
hyperparameters. The aim is to determine the best forecasting configuration to 
minimise RMSE. The flowchart describing the workflow is provided in Figure 3. 
Tables 2 and 3 provide the pseudocode for Levy Flight (LF) and LFPSO, 
respectively. The following are LFPSO procedures: 

 
Table 2. Pseudo Code for Levy Flight 

 
Source: Authors’ own creation. 
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Step 1 Initialisation of Hyperparameter Search Space (i) Number of hidden 
neurons in BiLSTM layer1 (φ1) (ii) Dropout rate in layer1 (φ2) (iii) Number of hidden 
units in BiLSTM layer2 (φ3) (iv) Dropout rate in layer2 (φ4) (v) Number of dense 
neurons (φ5) (vi) L2 Regularizer λ in Encoder Layer (φ6) (vii) L2 Regularizer λ in 
Decoder Layer 1 (φ7) (viii) L2 Regularizer λ in Decoder Layer 2 (φ8) are initialised 
as follows. 
                                    φmax ≤ φ ≤ φmin                                                                      (1) 
The search space ranges are 1≤φ1≤ 500, 0 ≤φ2≤ 1, 1 ≤φ3≤ 500, 0 ≤φ4≤ 1, 1 ≤φ5≤ 200, 
0.1 ≤φ6≤ 0.01, 0.1 ≤φ7≤ 0.01, 0.1 ≤φ8≤ 0.01 

 
Table 3. Pseudo Code for LFPSO 

                        
Source: Authors’ own creation.  

 
Step 2 The parameters of LFPSO are configured as follows. (i) Swarm size 

comprising 20 particles was chosen. (ii) The cognitive and social coefficients c1 and 
c2: c1 + c2 ≥ 2 (iii) The bounds of the search space are defined according to the ranges 
specified in Step 1. (iv) The maximum iterations for the algorithm was set to 20. (v) 
A threshold value, termed the trail limit, was set to 10.  

Step 3 The initial position of each particle are randomly selected inside the 
search space for the five hyperparameters (φ1 to φ8).  

Step 4 The fitness of each paricle is measured using the Root Mean Squared 
Error (RMSE).  
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Step 5 The beginning position of each particle is assigned as its personal best 
(pbest). The particle with the lowest fitness value is chosen as the global best (gbest).  

 
Table 4. Optimised Hyperparameters are highlighted in BOLD 

 
Source: Authors’ processing. 

 
Step 6 A trail counter is implemented for all particles. If the particle’s fitness 

does not improve relative to its pbest throughout iteration, this counter increases by 
one. 

Step 7 The trail limit of each particle is checked. The standard PSO will update 
a particle’s velocity and position using (2-4) if its trail counter has not exceeded the 
limit. 
                      𝑉𝑉𝑖𝑖,𝑑𝑑𝑡𝑡+1 = ꞷt 𝑉𝑉𝑖𝑖,𝑑𝑑𝑡𝑡+1 + c1r1(pbest𝑖𝑖,𝑑𝑑𝑡𝑡 −𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡 ) + c2r2(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑡𝑡− 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡 )                         (2) 
                             ꞷ = (Max_iter − iter)/ Max_iter                                                      (3) 
                                   𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡+1 = 𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡  + 𝑉𝑉𝑖𝑖,𝑑𝑑𝑡𝑡+1                                                                   (4) 

Step 8 If a particle fails to improve its pbesti over a certain number of iterations 
and exceeds the trailing limit, the Levy flight distribution function updates its 
position using (5-6).  

   Xi(t + 1) = T P + α1Neighbour + rand()×α2 × (T P + ∝3𝑋𝑋Leader) 
2

 − Xi(t)              (5) 

      𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 (t + 1) = LevyFlight(Xi(t + 1), T P, LB, UB)                                  (6) 
Step 9 The proposed deep learning model is trained, and the resulting RMSE is 

used to evaluate particle fitness.  
Step 10 Each particle’s fitness will be compared to pbest. The fitness value will 

be pbesti if it is better than the particle’s best position.  
Step 11 If a particle’s better position is better than the global best, gbest becomes 

pbesti .  
Step 12 Repeat steps 7-11 until reaching Max iter.  
Step 13 The DL model uses optimal hyperparameters φ1 -φ8 obtained from 

LFPSO. 
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2.2 Development of the Proposed ConvLSTM-BiLSTM Architecture 

 
A fully connected vanilla LSTM is capable of capturing the temporal 

characteristics of time-series data, but it lacks the capability to interpret the spatial 
characteristics of the data. In order to address this problem, we propose a 
ConvLSTMBiLSTM based encoder-decoder architecture that can effectively 
capture the spatio-temporal characteristics (Mohammad et al. 2023). 

The ConvLSTM model overcomes vanilla LSTM limitations in understanding 
the spatio-temporal dynamics within the input sequences by utilising its 
convolutional principles. To learn the spatio-temporal dynamics, the proposed model 
comprises two modules, an encoder module and a decoder or prediction module. 
This encoder-decoder architecture allows us to capture complex relationships within 
the EVCS and predict future charging demands accurately. The spatio-temporal 
encoder model captures charging station spatial correlations, whereas the temporal 
decoder model forecasts energy demand using historical data. The encoder’s role is 
to encode the input sequence’s temporal and spatial information into spatio-temporal 
feature vectors. The equations (7-12) describe the operations of ConvLSTM,  

      it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)                                              (7) 
     ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf )                                               (8) 
   𝐶̃𝐶t = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)                                                                (9) 
   Ct = ft ◦ Ct−1 + it ◦ 𝐶̃𝐶t                                                                                                                                 (10) 
    ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)                                            (11) 
    Ht = ot ◦ tanh(Ct)                                                                                        (12) 

where it, ft, and ot represent the input, forget, and output gates, respectively. Ct is the 
cell state, updated using the candidate cell state 𝐶̃𝐶t, while Ht is the hidden state. The 
functions σ and tanh control the flow of information, capturing both spatial and 
temporal dependencies. Following the preprocessing procedures, the time series data 
is structured as a 3D array [samples, sequences, features]. As required by the 
ConvLSTM layer, this 3D array is reshaped into a 5D array [samples, timesteps, 
rows, columns, channels]. The encoder section uses a single ConvLSTM layer with 
1 × 3 kernels and 64 filters. The ConvLSTM produces feature vectors, which are 
subsequently passed to the flatten layer which reorganises them into a one-
dimensional array. After flattening, the resultant 1D array is passed via the repeat 
vector layer, which duplicates the feature vectors seven times to reproduce into a 2D 
array. This replicated sequence is then fed into the decoder module having two 
BiLSTM layers with 298 and 401 neurons. The BiLSTM architecture utilises a 
backward-propagating LSTM to analyse sequence input, capturing information from 
both earlier and later time steps, enhancing the model’s understanding of temporal 
dynamics (Schuster & Paliwal, 1997). Table 4 shows the best hyperparameters set 
based on several experiments and LFPSO optimisation. The rectified linear unit 
(ReLU) is used as an activation function for all layers to introduce non-linearity to 
the architecture. The decoder generates individual predictions for each day in the 
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output sequence. A single final output covering the week’s prediction is then 
produced using a time distributed fully connected dense layer. The proposed 
architecture has two dense layers. The first dense layer has 141 hidden neurons with 
ReLU activation function and operates on each day of the decoder’s sequence 
independently. The second dense layer has a single neuron and acts on each day. The 
final output from the second layer represents the predicted energy demand for a 
single day. These individual day predictions are then aggregated with the subsequent 
six-day predictions from the decoder sequence to produce the final forecast for the 
entire week. Two regularisation methods improved model performance and training. 
The first strategy, Dropout, randomly deactivates % of hidden neurons throughout 
training iterations.  

 

 
Figure 4. Proposed ConvLSTM-BiLSTM based Encoder-Decoder Architecture 

Source: Authors’ own creation. 
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L2 regularisation, also known as weight decay was the second method. This 
technique penalises the high value weights and thus reduces the variance. Both these 
regularisation techniques are used to prevent overfitting of model. The proposed 
encoder-decoder architecture used for load forecasting is given in Figure 4. The 
training process was improved by using the Adam optimiser with learning rates 
ranging from 1e−4 to 1e−2. Also, the model was tested with 16, 32, 64, 128, and 256 
batches. Extensive trials showed that a batch size of 32 with a learning rate of 1e−4 

performed better in terms of time complexity and loss function optimisation. 
 
3. Data Analytics 
 

This section describes the load forecasting dataset preprocessing methods. The 
energy consumption trends in Palo Alto, California, over 10 years are used in this 
research. The Palo Alto dataset describes electric vehicle charging transactions in 
detail (City of Palo Alto, 2020). The dataset includes 2,59,415 charge transactions 
from 2011 to 2020 with 33 data fields each. The target variable for our prediction 
model is the energy demand in kWh.  
 
3.1 Data Preprocessing 

 
Data acquired through the communication infrastructure may be in many 

sources and unstructured formats, hindering analysis. Data preprocessing removes 
incorrect or corrupted entries to improve model training. Outliers and missing values 
in unprocessed data could negatively impact model performance. For best results, 
data-driven models need structured, high-quality data. 

1) Handling Missing Values and Outliers: Real-world datasets with missing 
values and outliers require robust analytical methods for reliable results. The Palo 
Alto dataset includes nine missing entries in the “Port type” field. Mode imputation 
fills missing data with the most repeated data. Outliers are the data points that differ 
from the majority, and can negatively impact data driven methods. This study detects 
outliers using Interquartile Range (IQR). Outliers are 1.5 IQR below the first quartile 
(Q1) and above the third quartile (Q3). After detection, the outliers are linearly 
interpolated. 

2) Feature Engineering: Feature engineering is the process of selecting and 
extracting useful features. Feature engineering directly enhances the model’s 
performance. We extracted the hour component from the ’Start Date’ feature and 
categorised it into ’Off-Peak’ and ’Peak’ intervals. The categorisation is based on the 
definitions provided by the U.S. Energy Information Administration (EIA), where 
peak hours are from 7:00 a.m. to 11:00 p.m. on weekdays, and off-peak hours are 
from 11:00 p.m. to 7:00 a.m. on weekdays and all day on weekends (Blink Charging, 
n.d.). The resulting data includes the number of transactions during both peak and 
off-peak hours each day. This helps to assess how peak and off-peak hours affect 
charging behaviour. Correlation analysis is also used to assess the linear relationships 
between features to identify the most informative features of the dataset. 
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3) Data resampling and Standardisation: This study downsamples hourly 
energy consumption data to daily totals. This reduces data points but provides a 
suitable format for daily prediction. Downsampling is done using Pandas resample() 
method. Using resample(’D’) along with sum(), date-time indexed data is grouped 
by day. The energy consumption and other feature values are added up to create a 
daily aggregated data. Figure 5 illustrates the visualisation of resampled daily data 
points of features over the years 2016 to 2019. Data normalisation after resampling 
ensure consistent numerical scales across features. The mathematical formulation for 
standard scaler is presented in (13). 

 

 
Figure 5. Convergence of losses over epochs 

Source: Authors’ processing. 
 

 
                                      z = (𝑥𝑥 − µ) 

𝜎𝜎
                                                                            (13) 

where x, µ, σ, and z represents the original data value, the mean value, standard 
deviation of the feature, and the normalised value respectively. 
 
3.2 Experimental Results and Discussion 
 

The Palo Alto dataset was used for evaluating the performance of proposed DL 
model. The pre-processed dataset is split into train and test arrays. The train array 
covers the years 2016-2018, while the test data is from the year 2019. The train and 
test arrays are split into standard weeks, starting from Sunday to Saturday, which is 
required for weekly predictions. The details of train-test split were given in Table 5. 
The model was trained using the train data to learn the complex patterns. The 
performance of the model was monitored during training, as shown in Figure 8, 
where the blue curve indicates the training loss and the orange curve indicates the 
validation loss (MSE). The epochs were set to 500, concluded at 297 epochs using 
an early stopping technique. Beyond epoch 297, the losses remained constant, 
signifying the model’s successful convergence. Lower values of both curves indicate 
better model performance. Upon completion of the training phase, the model’s 
effectiveness was assessed using a separate set of unseen test data. Several metrics 
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were used to evaluate the proposed model’s performance with the test data, including 
Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Mean Squared Error (MSE). To justify the superiority 
of the proposed model over other conventional approaches, this study conducted 
experiments using several baseline models, such as LSTM, BiLSTM, CNNLSTM, 
CNN-BiLSTM, LSTM-LSTM, LSTM-BiLSTM, and BiLSTM-BiLSTM, on the 
EVCSN dataset. Table 6 compares the proposed model’s performance against 
different baseline models. 
  

Table 5. Details of the Train-Test Period 

Source: Authors’ processing. 
 

Table 6. Comparison Results of Proposed Model Vs Other Baseline Models 

 
Source: Authors’ processing. 

 
Table 7. Comparison Results of Proposed Model Vs other Paper Models 

  
Source: Authors’ processing. 

 
Furthermore, a comparative analysis was carried out between the proposed 

model in this study and one previously published paper (Mohammad et al. 2023) 
which employed identical architectures, including ConvLSTM-BiLSTM as model I 
and BiConvLSTM-LSTM as model II to forecast the forthcoming 7-day load of 
EVCS. The comparison showed considerable improvements in critical metrics 
including RMSE, MAPE, and MSE, exhibiting respective reductions of around 
37.14%, 62.13%, and 61.17%. The comparative results were illustrated in Table 7, 
indicating clearly that our proposed model outperformed the models presented in 
(Mohammad et al., 2023). Figure 7 presents actual vs. predicted graphs of the 
proposed model across each step as well as an aggregated perspective by combining 
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all seven steps. Significantly, the figure illustrates a more precise convergence of the 
actual and predicted values for the suggested model, implying an enhanced level of 
accuracy compared to the baseline models. A comparison of the proposed model’s 
evaluation metrics at each step and when aggregated is displayed in Figure 9. The 
effectiveness of our model in capturing the spatio-temporal dynamics of EVCS for 
precise short-term load forecasting is confirmed by these meticulous comparisons. 
The deep learning models were developed utilising the Keras frontend library 
together with the TensorFlow back-end framework. Experimental results indicate 
that the proposed DL model outperforms every benchmark model, including well-
established, state-of-the-art methods and alternative encoder-decoder architectures. 
The improved performance of the proposed approach is mainly due to the use of the 
Levy Flight Particle Swarm Optimisation (LFPSO) algorithm to optimise 
hyperparameters in addition to extensive preprocessing. 

 

 
Figure 6. Comparison graphs of the proposed model across each step and aggregate 

Source: Authors’ processing. 
 

 
Figure 7. Comparison graphs of proposed model vs .other baseline models 

Source: Authors’ processing. 
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Figure 8. Comparison of metrics across each step and aggregated 

Source: Authors’ processing. 
 
4. Conclusions 
 

The important problem associated with energy demand forecast in the Electric 
Vehicle Charging Stations (EVCS) Network was addressed in this paper. We 
developed an innovative encoder-decoder network to efficiently capture the spatio-
temporal dynamics of these networks. Its performance consistently outperformed 
that of established benchmark models. Superior performance in short-term load 
forecasting for the upcoming seven days is achieved by our model, which was trained 
using a real-world Palo Alto dataset. Meticulous preprocessing involving feature 
extraction and selection and the application of Levy Flight Particle Swarm 
Optimisation (LFPSO) for hyperparameter optimisation greatly contribute to the 
significant performance of the forecasting model proposed. Accurate forecasting of 
energy loads in EVCS is useful for various stakeholders. This forecast can be utilised 
by utility providers, grid administrators, and EVCS managers in order to optimise 
energy consumption, maintain the stability of the grid, and control peak demands. 
The accuracy of the proposed model ensures a sustainable and efficient electric 
vehicle charging infrastructure. This study provides opportunities for further 
investigation. Incorporating additional features can improve forecast accuracy. This 
study encourages researchers to experiment with the suggested methods using 
various time horizons. Moreover, a promising field is the study of the effectiveness 
of various deep learning networks, particularly transformers with attention 
mechanisms. In conclusion, using this knowledge to explore reinforcement learning 
approaches for real-time load forecasting may be productive. 
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